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1. Backgrounds

Consider the nonlinear SDDE

dx(t) = f (x(t), x(t − τ(t)))dt + g(x(t), x(t − τ(t)))dB(t) (1)

with initial value ξ, B(t) := (B1(t), . . . ,Bm(t))T be an
m-dimensional standard Brownian motion,
f : Rd × Rd → Rd , g : Rd × Rd → Rd×m and τ(t) : R+ → R+

are Borel-measurable functions and 0 < τ(t) ≤ τ, t ∈ R+, for some
τ > 0.



Asymptotic stability of numerical approximations for the above
SDDE (1) or more general model has been widely investigated in
recent years. In general, to obtain the exponential stability results,
the following Khasminskii-type conditions are usually parts of the
sufficient conditions.

2〈x , f (x , y)〉+ ||g(x , y)||2 ≤ −C1|x |2 + C2|y |2 (2)

where C1 > C2 > 0.



For example, in [X. Mao, Horwood, Chichester, 2007], Chapter 5,
Razumikhin type theorems are presented for SDDEs, where
conditions in Corollary 6.6 implies (2), in [G. Lan, J. Comput.
Appl. Math., 340(2018), 334-341], Theorem 4.1 implied that if
there is no neutral term, then the MTEM method is mean square
exponentially stable under condition (2), under the same condition,
[Y. Zhang, M. Song, M, Liu, J. Comput. Appl. Math., 403(2022),
113849] obtained exponential stability of stochastic theta method
for nonlinear stochastic differential equations with piecewise
continuous arguments (in this case, τ(t) = t − [t]).



[L. Liu, H. Mo, F. Deng, Appl. Math. Comput., 353(2019)
320-328] obtained mean square exponential stability of split-step
method under stronger conditions (note that they need the
linearity of both f and g), while [L. Liu, Q. Zhu, J. Comput. Appl.
Math., 305(2016) 55-67] and [M. Obradović, M. Milošević,
Calcolo, 56:2(2019) 1-24] investigated mean square stability of two
class of theta method of neutral stochastic differential delay
equations under similar conditions.



Recently, by considering each component separately, [P. H. A.
Ngoc, L. T. Hieu, IEEE Trans. Automat. Control, 66(2021),
2351-2356] presented a different type of sufficient conditions under
which the trivial solution of given SDDE is mean square
exponentially stable. However, they need the diffusion term g
satisfy linear growth condition.
Motivated by this paper, now suppose that f and g jointly satisfy
the following

2xi fi (x , y) +
m∑
l=1

(gil(x , y))2 ≤
d∑

j=1

aijx
2
j +

d∑
j=1

bijy
2
j , i ∈ d (3)

where d := {1, 2, ..., d}.



Note that by (3) we can only have

2〈x , f (x , y)〉+ ||g(x , y)||2 ≤
d∑

j=1

d∑
i=1

aijx
2
j +

d∑
j=1

d∑
i=1

bijy
2
j .

If
∑d

i=1 aij ≥ 0 for some j ∈ d , or

0 < minj∈d(−
∑d

i=1 aij) < maxj∈d
∑d

i=1 bij , then (2) can never
hold. Therefore, (3) is a totally different type condition from (2).



To the best of our knowledge, no results can be found for the
exponential stability of numerical methods with condition (3).

In this talk, we will first define two numerical methods (including
θ-EM method and MTEM method) for SDDEs, and then we will
investigate the asymptotic mean square exponential stability of the
two given methods.



2. Settings and θ-EM method and MTEM method

Let (Ω,F , {Ft}t≥0,P) be a complete filtered probability space.
Let us give the definition of the mean square exponential stability
of SDDE (1).

Definition 1: The solution x(t) of SDDE (1) is said to be mean
square exponentially stable if there exists a pair of positive
constants λ and C such that

E |x(t)|2 ≤ CE |x0|2e−λt (4)

for all initial value x0 ∈ Rd .



To investigate mean square exponential stability of solution x(t)
and the corresponding numerical methods of SDDE (1), suppose
f (0, 0) = 0, g(0, 0) = 0. We also need the following assumptions:

Assumption 1: Assume that both the coefficients f and g in (1)
are locally Lipschitz continuous, that is, for each R > 0 there is
LR > 0 (depending on R) such that

|f (x , y)− f (x̄ , ȳ)| ∨ |g(x , y)− g(x̄ , ȳ)| ≤ LR(|x − x̄ |+ |y − ȳ |) (5)

for all |x | ∨ |y | ∨ |x̄ | ∨ |ȳ | ≤ R > 0.



Let ∆ be a stepsize such that τ = m̄∆ for some positive integer
m̄. Then for any θ ∈ [0, 1], we can define θ Euler-Maruyama
method (θ-EM for short) Xk as the following:

Xk = ξ(k∆), k = −m̄,−m̄ + 1, . . . , 0.

Xk+1 = Xk +
(

(1− θ)f
(
Xk ,Xk−[ τ(k∆)

∆
]

)
+ θf

(
Xk+1,Xk+1−[ τ((k+1)∆)

∆
]

))
∆

+ g
(
Xk ,Xk−[ τ(k∆)

∆
]

)
∆Bk , k = 0, 1, 2, . . . ,

(6)

Here ∆Bk = B((k + 1)∆)− B(k∆) is the increment of the
m-dimensional standard Brownian motion.



Note that if θ = 0, it becomes to classical EM method, if θ = 1, it
is called Backward Euler method. Moreover, since it is an implicit
method for θ ∈ (0, 1], then it is necessary to make sure that θ-EM
method is well defined. So we need the following assumption:

Assumption 2 Assume that f is one-sided Lipschitz continuous,
that is, there is L > 0 such that

〈x − x̄ , f (x , y)− f (x̄ , y)〉 ≤ L|x − x̄ |2 (7)

for all x , y , x̄ ∈ Rd .

According to [F. Wu, X. Mao, L. Szpruch, Numer. Math. 115
(2010)681-697], [E. Hairer, G. Wanner, Springer, Berlin, 1996] or
[X. Mao, C. Yuan, Imperial College Press, London, 2006], if
Lθ∆ < 1, then the θ-EM scheme (6) is well defined.



Now let us consider the so called MTEM method, which is an
explicit method.
For ∆∗ > 0 , let h(∆) be a strictly positive decreasing function
h : (0,∆∗]→ (0,∞) such that

lim
∆→0

h(∆) =∞ and lim
∆→0

L2
h(∆)∆ = 0.

According to [G. Lan, F. Xia, J. Comput. Appl. Math., 334(2018),
1-17.], Remark 2.1, such h always exists.
For any ∆ ∈ (0,∆∗), we define the modified truncated function of
f as the following:

f∆(x , y) =

{
f (x , y), |x | ∨ |y | ≤ h(∆),
|x |∨|y |
h(∆) f

(
h(∆)
|x |∨|y |(x , y)

)
, |x | ∨ |y | > h(∆).

g∆ is defined in the same way as f∆. Here f (a(x , y)) ≡ f (ax , ay)
for any t ≥ 0, a ∈ (0, 1), x , y ∈ Rd .



Let ∆ be a stepsize such that τ = m̄∆ for some positive integer m̄.
Then by using f∆ and g∆, we can define the modified truncated
Euler-Maruyama method (MTEM for short) Xk as the following:

Xk+1 = Xk + f∆

(
Xk ,Xk−[ τ(k∆)

∆
]

)
∆

+ g∆

(
Xk ,Xk−[ τ(k∆)

∆
]

)
∆Bk , k ≥ 0,

Xk = ξ(k∆), k = −m̄,−m̄ + 1, . . . , 0.

(8)

Here ∆Bk = B((k + 1)∆)− B(k∆) is the increment of the
m-dimensional standard Brownian motion.



Assumption 3:
Let f (x , y) := (f1(x , y), f2(x , y), . . . , fd(x , y))T ∈ Rd and
g(x , y) := (gil(x , y)) ∈ Rd×m. Suppose there exist constants
aii ∈ R; aij ≥ 0, i 6= j ; bij > 0, i , j ∈ d , such that

2xi fi (x , y) +
m∑
l=1

(gil(x , y))2 ≤
d∑

j=1

aijx
2
j +

d∑
j=1

bijy
2
j (9)

holds for any i ∈ d . And there exist constants pj > 0, j ∈ d such
that

d∑
j=1

(aij + bij)pj < 0. (10)



Definition 2: The numerical method Xk is said to be mean square
(or almost surely) exponential stable with rate λ > 0 if there exists
∆∗ > 0 such that for any ∆ ∈ (0,∆∗) the discrete approximation
satisfies

lim sup
k→∞

logE|Xk |2

k∆
≤ −λ (or lim sup

k→∞

log |Xk |
k∆

≤ −λ a.s.).

(11)



Firstly, we have the following exponential stability result for SDDE
(1).

Theorem 1 Suppose Assumptions 1 and 3 hold. Then for any
given initial data ξ, there always exists a unique solution x (t, ξ)
and the trivial solution of (1) is exponentially stable in mean
square sense.



Remark 1 Notice that existence and uniqueness of solution to
equation (1) is obvious since local Lipschitz continuity of f and g
implies there exists a unique (local) solution to equation (1), and
Assumption 3 implies

2〈x , f (x , y)〉+ ||g(x , y)||2 ≤ K (1 + |x |2 + |y |2),

which guarantees the unique solution is global. Moreover, it is
obvious that Assumption 2 includes the case that the noise term g
is not linear growing with respect to space value. On the other
hand, in [P. H. A. Ngoc, L. T. Hieu, IEEE Trans. Automat.
Control, 66(2021), 2351-2356] the diffusion term g must be linear
growing. So our results is a generalization of Theorem II.2 in Ngoc
and Hieu.



3. Exponential stability of θ-EM method

Theorem 2 Suppose Assumptions 1-3 hold. Moreover, there exist
constants 0 < ε < mini |aii |

d maxi |aii | and pj > 0, j ∈ d such that

εaiipi +
∑
j 6=i

aijpj +
d∑

j=1

bijpj < 0. (12)

Then for any fixed θ ∈ ( 1
2 , 1], the θ-EM method (6) is mean quare

and almost surely exponentially stable.



Remark 2 Notice that (12) implies

d∑
j=1

aijpj +
d∑

j=1

bijpj < 0. (13)

Then similar to the proof of Theorem II.2 in [Ngoc, Hieu, IEEE
Trans. Automat. Control, 66(2021), 2351-2356], it follows that
the Assumption 3 implies that the solution x (t, ξ) to (1) is
exponentially stable in mean square sense if (10) holds. Theorem 2
assures that θ-EM method (6) replicates mean square exponential
stability of the exact solution under given conditions.



Theorem 3 Suppose all conditions in Theorem 2 hold, and there
exists a constant K > 0 such that

|f (x , y)| ≤ K (|x |+ |y |). (14)

Then for any fixed 0 ≤ θ ≤ 1
2 , θ-EM method is mean square and

almost surely exponentially stable for sufficient small step size
∆ > 0.



Sketch of the Proof of Theorem 2 and 3.

Define F i
k := X i

k − θfi
(
Xk ,Xk−[ τ(k∆)

∆
]

)
∆,

f ik := fi

(
Xk ,Xk−[ τ(k∆)

∆
]

)
, g il

k := gil

(
Xk ,Xk−[ τ(k∆)

∆
]

)
.

The main idea is second principle of mathematical induction.
It is obvious that

E |X i
k |2 ≤ C ′pie

−βk∆ (15)

holds for −m ≤ k ≤ 0, i = 1, 2, ..., d .



Assume that

E |X i
l |2 ≤ C ′pie

−βl∆,∀ − m̄ ≤ l ≤ k − 1, i = 1, 2, ..., d . (16)

By using

|F i
k+1|2 ≤ (1−C∆)|F i

k |2+(
d∑
j 6=i

aij |X j
k |

2+
d∑

j=1

bij |X j

k−[ τ(k∆)
∆

]
|2)∆+M i

k

and the fact that there exist β > 0 small enough and ε′ > 0 such
that εmaxi |aii |

mini |aii | < ε′ < 1
d and

εaiipi +
∑
j 6=i

aijpj +
d∑

j=1

bijpje
βτ ≤ −ε′βpi (17)

for any i ∈ d .
We firstly derive that

E |F i
k |2 ≤ C ′ε′pie

−βk∆. (18)



Then by

|F i
k |2 = |X i

k |2 − 2θ∆X i
k f

i
k + θ2∆2|f ik |2

≥ |X i
k |2 − θ∆

 d∑
j=1

aij |X j
k |

2 +
d∑

j=1

bij |X j

k−[ τ(k∆)
∆

]
|2
 ,

we can finally derive

d∑
i=1

|X i
k |2

pi
≤ 1

1− D

(
d∑

i=1

|F i
k |2

pi (1− θ∆aii )

+
d∑

j=1

(
d∑

i=1

θ∆

1− θ∆aii

bijpj
pi

) |X j

k−[ τ(k∆)
∆

]
|2

pj


where D =

∑d
i=1

θ∆
1−θ∆aii

maxj 6=i
aijpj
pi

< 1 for sufficiently small ∆.



It follows that

d∑
i=1

E |X i
k |2

pi
≤ 1

1− D

(
dC ′ε′e−βk∆

1− θ∆ maxi |aii |

+C ′e−βk∆eβτ
d∑

j=1

d∑
i=1

θ∆

1− θ∆aii

bijpj
pi


= C ′e−βk∆ 1

1− D

(
dε′

1− θ∆ maxi |aii |

+eβτ
d∑

j=1

d∑
i=1

θ∆

1− θ∆aii

bijpj
pi

.
=: C ′e−βk∆G (∆).

Since G (0) = dε′ < 1, and G is continuous, then there exists ∆∗

small enough such that G (∆) ≤ 1 for all ∆ ≤ ∆∗.



If f satisfies linear growth condition, then

|X i
k |2 ≥

|F i
k |2 − (θ∆K + 2θ2∆2K 2)(

∑d
j 6=i |X

j
k |

2 + |X
k−[ τ(k∆)

∆
]
|2)

1 + 4θ∆K + 2θ2∆2K 2
.

Thus
|F i

k+1|2 ≤ |F i
k |2 + (2(1− 2θ)K 2∆ + aii )∆

×
|F i

k |2 − (θ∆K + 2θ2∆2K 2)(
∑d

j 6=i |X
j
k |

2 + |X
k−[ τ(k∆)

∆
]
|2)

1 + 4θ∆K + 2θ2∆2K 2

+
∑
j 6=i

(2(1− 2θ)K 2∆ + aij)|X j
k |

2∆

+
d∑

j=1

(2(1− 2θ)K 2∆ + bij)|X j

k−[ τ(k∆)
∆

]
|2∆ + M i

k .



Or

|F i
k+1|2 ≤ |F i

k |2 (1 + C1,∆∆) +
∑
j 6=i

(C2,∆ + aij)|X i
k |2∆

+
d∑

j=1

(C2,∆ + bij) |X i

k−[ τ(k∆)
∆

]
|2∆ + M i

k

where it is obvious that

C1,∆ :=
2(1− 2θ)K 2∆ + aii

1 + 4θ∆K + 2θ2∆2K 2
→ aii

and

C2,∆ := 2(1−2θ)K 2∆−(θK+2θ2∆K 2)
(2(1− 2θ)K 2∆ + aii )∆

1 + 4θ∆K + 2θ2∆2K 2
→ 0

as ∆→ 0.



Then for any C < mini |aii |, we can choose ε̃ > 0 and ∆ > 0 small
enough such that

|F i
k+1|2 ≤ |F i

k |2(1−C∆)+
∑
j 6=i

(aij+ε̃)|X j
k |

2∆+
d∑

j=1

(bij+ε̃)|X j

k−[ τ(k∆)
∆

]
|2+M i

k .

Note that (12) implies that there exist β > 0 small enough and

ε′ > 0 such that εmaxi |aii |
mini |aii | < ε′ < 1

d and

εaiipi +
∑
j 6=i

(aij + ε̃)pj +
d∑

j=1

(bij + ε̃)pje
βτ ≤ −ε′βpi (19)

for any i ∈ d .
That is, (17) holds for aij and bij replaced by aij + ε̃ and bij + ε̃,
respectively.
Then repeat the following part of the proof of Theorem 2 from line
to line, we complete the proof of Theorem 3.



4. Exponential stability of MTEM method

To obtain the mean exponential stability of MTEM method, we
need the following two Lemmas.
Lemma 1: Suppose the Assumption 1 and Assumption 2 hold.
Then for any fixed ∆ > 0,there exist constant matrices
aii ∈ R; aij ≥ 0, i 6= j ; bij ≥ 0. i ∈ d , such that

2xi ·f∆,i (x , y)+
m∑
l=1

g2
∆,il(x , y) ≤

d∑
j=1

aijx
2
j +

d∑
j=1

bijy
2
j , i ∈ d (20)

for any x , y .



Lemma 2: Suppose Assumption 1 holds. Then for any fixed
∆ > 0, the modified truncated functions f∆ and g∆ are linear
growing with coefficient Lh(∆). That is

|f∆(x , y)| ∨ |g∆(x , y)| ≤ Lh(∆)(|x |+ |y |) (21)

holds for all x , y ∈ Rd .
Remark In [G. Lan, J. Comput. Appl. Math., 340(2018),
334-341], the author proved that both f∆ and g∆ are globally
Lipschitz continuous for any fixed ∆ > 0. However, we can only
obtain |f∆(x , y)| ≤ 5Lh(∆)(|x |+ |y |) while by Lemma 2, we have
|f∆(x , y)| ≤ Lh(∆)(|x |+ |y |).



Now we are ready to present the main result in this section.

Theorem 4 Suppose Assumptions 1 and 3 hold. Then the MTEM
method (8) is mean quare and almost surely exponentially stable.



Sketch of the Proof of Theorem 4.

By (8), for any k > 0, we have

|X i
k+1|2 = |X i

k |2 +
(

2X i
k f∆,i

(
Xk ,Xk−[ τ(k∆)

∆
]

)
+

m∑
l=1

g2
∆,il

(
Xk ,Xk−[ τ(k∆)

∆
]

))
∆

+ f 2
∆,i

(
Xk ,Xk−[ τ(k∆)

∆
]

)
∆2 + Mk

(22)



where

Mk = 2

〈
X i
k ,

m∑
l=1

g∆,il

(
Xk ,Xk−[ τ(k∆)

∆
]

)
∆Bk

〉

+ 2

〈
f∆,i

(
Xk ,Xk−[ τ(k∆)

∆
]

)
,

m∑
l=1

g∆,il

(
Xk ,Xk−[ τ(k∆)

∆
]

)
∆Bk

〉
∆

+

∣∣∣∣∣
m∑
l=1

g∆,il

(
Xk ,Xk−[ τ(k∆)

∆
]

)
∆Bk

∣∣∣∣∣
2

−

∣∣∣∣∣
m∑
l=1

g∆,il

(
Xk ,Xk−[ τ(k∆)

∆
]

)∣∣∣∣∣
2

∆

 .



It is obvious that Mk is a Fk∆ martingale and EMk = 0. Then, by
Lemmas 1 and 2, we have

eα(k+1)∆E |X i
k+1|2 − eαk∆E |X i

k |2

≤ eα(k+1)∆(1− e−α∆)E |X i
k |2

+
d∑

j=1

(aij + 2L2
h(∆)∆)E |X j

k |
2eα(k+1)∆∆

+ (
d∑

j=1

bij + 2L2
h(∆)∆)E |X j

k−[ τ(k∆)
∆

]
|2eα(k+1)∆∆.



Since (10) holds, similar to the proof of Theorem 1, there exist
β > 0 and ε > 0 small enough such that

d∑
j=1

(
aij + ε+ eβτ (bij + ε)

)
pj ≤ −βpi (23)

for any i ∈ d



Assume that

E |X i
k |2 ≤ K̄pie

−βk∆E ||ξ||2, k 6 n − 1. (24)

Now for k = n, it follows that

eαn∆E |X i
n|2 ≤ E |X i

0|2 +
n−1∑
l=0

eα(l+1)∆(1− e−α∆

+ (aii + 2L2
h(∆)∆)∆)E |X i

l |2

+
n−1∑
l=0

∑
i 6=j

(aij + 2L2
h(∆)∆)∆eα(l+1)∆E |X j

l |
2

+
n−1∑
l=0

d∑
j=1

(bij + 2L2
h(∆)∆)∆eα(l+1)∆E |X j

l−[ τ(l∆)
∆

]
|2.



Choose α > max
i∈d
|aii |, then 1− e−α∆ + (aii + 2L2

h(∆)∆)∆ > 0.

eαn∆E |X i
n|2

≤ E |X i
0|2 +

n−1∑
l=0

eα(l+1)∆(1− e−α∆ + (aii + 2L2
h(∆)∆)∆)K1pie

−βl∆

+
n−1∑
l=0

∑
i 6=j

(aij + 2L2
h(∆)∆)∆eα(l+1)∆K1pje

−βl∆

+
n−1∑
l=0

d∑
j=1

(bij + 2L2
h(∆)∆)∆eα(l+1)∆K1pje

−β(l−[ τ(l∆)
∆

])∆

≤ E |X i
0|2 +

n−1∑
l=0

(eα∆ − 1)K1pi · e(α−β)l∆

+
n−1∑
l=0

d∑
j=1

((aij + 2L2
h(∆)∆) + (bij + 2L2

h(∆)∆)eβτ )pj∆K1e
α∆e(α−β)l∆.

where K1 = K̄E ||ξ||2.



Then if we choose the stepsize ∆ > 0 sufficiently small such that
2L2

h(∆)∆ ≤ ε, (23) yields

eαn∆E |X i
n|2

≤ E |X i
0|2 + K1pi · (eα∆ − 1) · e

(α−β)n∆ − 1

e(α−β)∆ − 1

− K1βpi∆eα∆ e(α−β)n∆ − 1

e(α−β)∆ − 1

= E |X i
0|2 + K1pi · (eα∆ − 1− β∆eα∆) · e

(α−β)n∆ − 1

e(α−β)∆ − 1
.



On the other hand, it is obvious that

eα∆ − 1− β∆eα∆ = (1− β∆)eα∆ − 1

≤ e−β∆ · eα∆ − 1 = e(α−β)∆ − 1.
(25)

Therefore,

eαn∆E |X i
n|2 ≤ E |X i

0|2 + K1pi · (e(α−β)n∆ − 1)

= E |X i
0|2 − K1pi + K1pi · e(α−β)n∆

≤ K1pi · e(α−β)n∆.

(26)



Thus,

E |X i
n|2 ≤ K1pi · e−βn∆. (27)

For almost sure exponential stability, a standard procedure of using
Chebyshev inequality and Borel-Cantelli’s Lemma implies that

lim sup
n→∞

log |X i
n|

n∆
≤ −β

2
, a.s.



5. Examples

Example 1 Consider a 2-D stochastic differential delay equation
given by

dx1(t) = (−1

5
x1(t)− 2

9
x3

1 (t) +
4

5
x2(t) +

1

104
x1(t − τ(t))

+
1

104
x2(t − τ(t)))dt +

2

3
x2

1 (t)dB1(t)

dx2(t) = (

√
38

625
x1(t)− x2(t) +

1

104
x1(t − τ(t))

+
1

104
x2(t − τ(t)))dt +

√
2

5
x2(t)dB2(t)

(28)

for t ≥ 0, where the initial value
ξ(s) ∈ C ([−τ, 0],Rd), τ(t) = 0.1(1− | sin(t)|) ≤ τ = 0.1, and
B(·) = (B1(·),B2(·))T is a 2-D Brownian motion.



Clearly

2x1f1(x , y) + g2
11(x , y) + g2

12(x , y)

= −2

5
x2

1 −
4

9
x1x

3
1 +

8

5
x1x2 +

2

104
x1y1 +

2

104
x1y2 +

4

9
x4

1

≤ − 399

5000
x2

1 + 2x2
2 +

1

104
y2

1 +
1

104
y2

2

for any x , y ∈ R2 and

2x2f2(x , y) + g2
21(x , y) + g2

22(x , y)

=
2
√

38

625
x1x2 −

8

5
x2

2 +
2

104
x2y1 +

2

104
x2y2

≤ 1

56
x2

1 −
399

5000
x2

2 +
1

104
y2

1 +
1

104
y2

2

for any y ∈ R2.



If we take

a11 = − 399

5000
, a12 = 2, a21 =

1

56
, a22 = − 399

5000
,

b11 =
1

104
, b12 =

1

104
, b21 =

1

104
, b22 =

1

104
,

and choose ε = 499
1000 <

1
2 = mini aii

d maxi aii
, p1 = 500, p2 = 1, we obtain

that
εa11p1 + a12p2 + b11p1 + b12p2 < 0

a21p1 + εa22p2 + b21p1 + b22p2 < 0.



Since both f and g are locally Lipschitz continuous. Thus, there
exists a unique global solution to equation (28), and the trivial
solution is exponentially stable in mean square sense by Theorem
1. Moreover, mean square and almost sure exponential stability
holds for the θ-EM method for any fixed θ ∈ ( 1

2 , 1] by Theorem 2.

By Theorem 4, the MTEM method is also mean square and almost
surely exponentially stable.



Meanwhile, we can find

2〈x , f (x , y)〉+ ||g(x , y)||2

=2x1f1(x , y) + 2x2f2(x , y) + g2
11(x , y)

+ g2
12(x , y) + g2

21(x , y) + g2
22(x , y)

=− 2

5
x2

1 + (
2
√

38

625
+

8

5
)x1x2 −

8

5
x2

2 +
2

104
x1y1

+
2

104
x1y2 +

2

104
x2y1 +

2

104
x2y2.

(29)



We claim that (29) could not be written as Khasminskii-type
condition (2). Indeed, it follows that

2〈x , f (x , y)〉+ ||g(x , y)||2

≤ −2

5
x2

1 + (

√
38

625
+

4

5
)(n1x

2
1 +

1

n1
x2

2 )− 8

5
x2

2 +
1

104
(n2x

2
1 +

1

n2
y2

1 )

+
1

104
(n3x

2
1 +

1

n3
y2

2 ) +
1

104
(n4x

2
2 +

1

n4
y2

1 ) +
1

104
(n5x

2
2 +

1

n5
y2

2 )

= − 1

104
(4000− (16

√
38 + 8000)n1 − n2 − n3)x2

1

− 1

104
(16000− 8000 + 16

√
38

n1
− n4 − n5)x2

2

+
1

104
(

1

n2
+

1

n4
)y2

1 +
1

104
(

1

n3
+

1

n5
)y2

2 .

for any n1, n2, n3, n4, n5 > 0.



However, if (2) holds for some C1 > C2 > 0, then we must have

1

104
min{4000− (16

√
38 + 8000)n1 − n2 − n3,

16000− 8000 + 16
√

38

n1
− n4 − n5} ≥ C1

(30)

for some n1, n2, n3, n4, n5 > 0.
Since there is no n1 > 0 such that 4000− (16

√
38 + 8000)n1 > 0

and 16000− 8000+16
√

38
n1

> 0, (29) can never be written in the form
of Khasminskii-type conditions (2).

However, we can get mean square exponential stability of both the
exact solution x(t) and the θ-EM method Xk for any fixed
θ ∈ ( 1

2 , 1] by Theorem 1 and Theorem 2. And Xk is also almost
surely exponentially stable.

Moreover, the MTEM method is also mean square and almost
surely exponentially stable by Theorem 4.



Example 2 Consider the following 2-D stochastic differential delay
equation

dx1(t) = (−2

5
x1(t) +

4

5
x2(t) +

1

104
x1(t − τ(t)) +

1

104
x2(t − τ(t)))dt

+

√
10

5
x1(t)dB1(t)

dx2(t) = (

√
38

625
x1(t)− x2(t) +

1

104
x1(t − τ(t)) +

1

104
x2(t − τ(t)))dt

+

√
10

5
x2(t)dB2(t)

(31)
for t ≥ 0, with initial value ξ(s) ∈ C ([−τ, 0],Rd), where
τ = 0.1, θ ∈ [−τ, 0], τ(t) = 0.1| sin(t)| ≤ τ .



Similar to Example 1, it is easy to verify that (9) holds for

a11 = − 399

5000
, a12 = 2, a21 =

1

56
, a22 = − 399

5000
,

b11 =
1

104
, b12 =

1

104
, b21 =

1

104
, b22 =

1

104
,

and (12) holds for ε = 499
1000 , p1 = 500, p2 = 1. It is easy to see f

satisfies (14).
Therefore, it follows that the θ-EM method (it is well defined since
f is global Lipschitz continuous in this case) is mean square and
almost surely exponentially stable for any fixed 0 ≤ θ ≤ 1

2 by
Theorem 3.

Moreover, the MTEM method is also mean square and almost
surely exponentially stable by Theorem 4.



——————

Thanks!

——————


